Дисплеи (мониторы).
Режим отображения:
На рисунке 1 изображены блок-схемы двух высокопроизводительных векторных дисплеев. В обоих случаях предполагается, что такие геометрические преобразования, как поворот, перенос, масштабирование, перспективное проецирование и отсечение, реализованы аппаратно в геометрическом процессоре.
При использовании первой схемы возникает идея двойной буферизации и раздельного изменения изображения и его регенерации. Так как в этой конфигурации геометрический процессор не успевает сгенерировать сложное новое или измененное изображение во время одного цикла регенерации, то дисплейный буфер делится на две части. В то время как измененное изображение обрабатывается и записывается в одну половину буфера, дисплейный контроллер регенирирует ЭЛТ из другой половины буфера. При завершении изменения изображения буферы меняются ролями, и этот процесс повторяется. Таким образом, новое или измененное изображение может генерироваться каждый второй, третий, четвертый и т.д. циклы регенерации. Использование двойной буферизации предотвращает одновременный вывод части старого и части нового измененного изображения в течение одного и более циклов регенерации.
Во второй схеме геометрический процессор работает быстрее, чем необходимо для регенерации достаточно сложных изображений. В этом случае исходная геометрическая база данных, посланная из ЦПУ, сохраняется непосредственно в дисплейном буфере, а векторы обычно задаются в пользовательских координатах в виде чисел с плавающей точкой. Дисплейный контроллер за один цикл регенерации считывает информацию из дисплейного буфера, пропускает ее через геометрический процессор и результат передает генератору векторов. При таком способе обработки геометрические преобразования должны выполняться "на лету" в течение одного цикла регенерации.
Растровое устройство можно рассматривать как матрицу дискретных ячеек (точек), каждая из которых может быть подсвечена. Таким образом, оно является точечно-рисующим устройством. Невозможно, за исключением специальных случаев, непосредственно нарисовать отрезок прямой из одной адресуемой точки или пиксела в матрице в другую адресуемую точку. Отрезок можно только аппроксимировать последовательностями точек (пикселов), близко лежащих к реальной траектории отрезка. Эту идею иллюстрирует рисунок 2.
Чаще всего для графических устройств с растровой ЭЛТ используется буфер кадра. Буфер кадра представляет собой большой непрерывный участок памяти компьютера. Для каждой точки или пиксела в растре отводится как минимум один бит памяти. Эта память называется битовой плоскостью. Для квадратного растра размером 512 х 512 требуется 2 18, или 262144 бита памяти в одной битовой плоскости. Из-за того, что бит памяти имеет только два состояния (двоичное 0 или 1), имея одну битовую плоскость, можно получить лишь черно-белое изображение. Битовая плоскость является цифровым устройством, тогда как растровая ЭЛТ - аналоговое устройство. Поэтому при считывании информации из буфера кадра и ее выводе на графическое устройство с растровой ЭЛТ должно происходить преобразование из цифрового представления в аналоговый сигнал. Такое преобразование выполняет цифро-аналоговый преобразователь (ЦАП). На рисунке 3 приведена схема графического устройства с черно-белой растровой ЭЛТ, построенного на основе буфера кадра с одной битовой плоскостью.
Число доступных уровней интенсивности можно увеличить, незначительно расширив требуемую для этого память и воспользовавшись таблицей цветов, как схематично показано на рисунке 5.
Поскольку существует три основных цвета, можно реализовать простой цветной буфер кадра с тремя битовыми плоскостями, по одной для каждого из основных цветов. Каждая битовая плоскость управляет индивидуальной электронной пушкой для каждого из трех основных цветов. Три основных цвета, комбинируясь на ЭЛТ, дают восемь цветов. Схема простого цветного растрового буфера показана на рисунке 6. Чтобы увеличить количество цветов для каждой из трех цветовых пушек используется дополнительные битовые плоскости.
Тип экрана:
Экран жидкокристаллического дисплея (ЖКД) состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые изменяют свои оптические свойства в зависимости от прилагаемого электрического заряда. Жидкие кристаллы сами не светятся, поэтому ЖКД нуждаются в подсветке или во внешнем освещении. Основным достоинством ЖКД являются их габариты (экран плоский). К недостаткам можно отнести недостаточное быстродействие при изменении изображения на экране, что особенно заметно при перемещении курсора мыши, а также зависимость резкости и яркости изображения от угла зрения.
ЖК-дисплеи обладают неоспоримыми преимуществами перед конкурирующими устройствами отображения:
- 1.Размеры. ЖК-дисплеи отличаются малой глубиной и небольшой массой и поэтому их более удобно перемещать и устанавливать, чем ЭЛТ-мониторы, у которых размер в глубину приблизительно равен ширине. 2.Энергопотребление. ЖК-дисплей потребляет меньшую мощность, чем ЭЛТ-монитор с сопоставимыми характеристиками. 3.Удобство для пользователя. В ЭЛТ электронные лучи при развертке движутся по экрану, обновляя изображение. Хотя в большинстве случаев можно установить такую частоту регенерации (число обновлений экрана электронными лучами в секунду), что изображение выглядит стабильным, некоторые пользователи все же воспринимают мерцание, способное вызвать быстрое утомление глаз и головную боль. На экране ЖК-дисплея каждый пиксел либо включен, либо выключен, так что мерцание отсутствует. Кроме того, для ЭЛТ-мониторов характерно в небольших количествах электромагнитное излучение; в ЖК-мониторах такого излучения нет.
HCA-панели обеспечивают такую же контрастность изображения, как TFT-матрицы, и почти не уступают им по скорости реакции при воспроизведении видео. Фирма Arithmos разработала процессор визуализации для DSTN-панелей, который позволяет еще более улучшить качество изображения. Таким образом, для пользователей, ограниченных в средствах, DSTN-дисплей может оказаться хорошим компромиссным решением. Нынешним летом Arithmos надеется выпустить в продажу 15-дюйм DSTN ЖК-дисплей (построенный с применением ее технологии) по цене около 1000 долл.
В ЖК-дисплеях угол обзора не только мал, но и асимметричен: обычно он составляет 45o по горизонтали и +15...-30 по вертикали. Излучающие дисплеи, такие как электролюминесцентные, плазменные и на базе ЭЛТ, как правило, имеют конус обзора от 80 до 90 по обеим осям. Хотя в последнее время на рынке появились модели ЖК-дисплеев с увеличенным углом обзора 50-60o.
Представитель Hitachi Тим Паттон (Tim Patton) считает, что в традиционных ЖК-дисплеях наблюдается зависимость контрастности и цвета изображения от угла зрения. Эта проблема обострялась по мере увеличения размеров ЖК-дисплеев и приобретения ими способности воспроизводить больше цветов.
Hitachi при создании своего нового дисплея SuperTFT воспользовалась иной технологией - IPS. Как известно, в обычных ЖК-дисплеях молекулы жидкого кристалла меняют свою ориентацию с горизонтальной на вертикальную под воздействием электрического поля, а адресующие электроды помещаются на две расположенные друг против друга стеклянные подложки. В IPS(in-plane switching)-дисплеях, наоборот, происходит чередование двух углов в горизонтальной плоскости, причем оба электрода находятся на одной из подложек. В результате угол обзора как по горизонтальной, так и по вертикальной оси достигает 70 o.
Газоплазменные мониторы состоят из двух пластин, между которыми находится газовая смесь, светящаяся под воздействием электрических импульсов. Такие мониторы не имеют недостатков, присущих ЖКД, однако их нельзя использовать в переносных компьютерах с аккумуляторным и батарейным питанием, так как они потребляют большой ток.
Размер по диагонали (обычно от 14" до 21") и размер зерна(обычно от 0.25 до 0.31 мм).
Размер по диагонали (расстояние от левого нижнего до правого верхнего угла экрана) приводится в дюймах. Наиболее распространены мониторы с диагональю 14". Однако работать с монитором с диагональю 15" намного удобнее, а для работы с графическими пакетами, издательскими системами и системами автоматизированного проектирования необходимы мониторы с диагональю не меньше 17";- теневая маска (Dot Pitch) экрана. Единицей измерения является расстояние между отверстиями маски в мм. Чем меньше это расстояние и чем больше отверстий, тем выше качество изображения. Этот параметр часто отождествляют с зерном экрана монитора, однако это справедливо не во всех случаях; - разрешение, измеряется в пикселах (точках), помещающихся по горизонтали и вертикали видимой части экрана. В настоящее время наиболее распространены мониторы с расширением не менее 1024*768 пикселей; - кинескоп. Наиболее предпочтительны следующие типы кинескопов: Black Trinitron, Black Matrix и Black Planar. Данные кинескопы очень контрастны, дают отличное изображение, однако их люминофор чувствителен к свету, что может сократить срок службы монитора. К тому же при работе с контрастным монитором быстрее устают глаза; - потребляемая мощность. У мониторов с диагональю 14" потребляемая мощность не должна превышать 60 Вт, иначе повышается вероятность теплового перегрева монитора, что сокращает срок его службы. У более крупных мониторов потребляемая мощность соответственно выше; - антибликовое покрытие. Для дешевых мониторов используют пескоструйную обработку поверхности экрана. При этом качество изображения ухудшается. В дорогих мониторах на поверхность экрана наносится специальное химическое вещество, обладающее антибликовыми свойствами; - защитные свойства монитора. В настоящее время распространены мониторы с низким уровнем излучения (LR-мониторы). Они отвечают нормам стандарта MPRI или MPR II.
Цветность:
- 1. Цветные; 2. Монохромные.
Частота кадров (обычно от 50 до 100 Гц).
Все современные аналоговые мониторы условно можно разделить на следующие типы:
- 1. с фиксированной частотой развертки; 2. с несколькими фиксированными частотами; 3. и многочастотные (мультичастотные).
Видеодиапазон (обычно от 65 до 200 МГц).
Видеосигнал:
- 1.Цифровой; 2.Аналоговый.
Прочие характеристики (функции управления растром, система энергосбережения, защита от излучения, вес, габариты, потребляемая мощность).
Дисплеи (мониторы).
Режим отображения:
На рисунке 1 изображены блок-схемы двух высокопроизводительных векторных дисплеев. В обоих случаях предполагается, что такие геометрические преобразования, как поворот, перенос, масштабирование, перспективное проецирование и отсечение, реализованы аппаратно в геометрическом процессоре.
При использовании первой схемы возникает идея двойной буферизации и раздельного изменения изображения и его регенерации. Так как в этой конфигурации геометрический процессор не успевает сгенерировать сложное новое или измененное изображение во время одного цикла регенерации, то дисплейный буфер делится на две части. В то время как измененное изображение обрабатывается и записывается в одну половину буфера, дисплейный контроллер регенирирует ЭЛТ из другой половины буфера. При завершении изменения изображения буферы меняются ролями, и этот процесс повторяется. Таким образом, новое или измененное изображение может генерироваться каждый второй, третий, четвертый и т.д. циклы регенерации. Использование двойной буферизации предотвращает одновременный вывод части старого и части нового измененного изображения в течение одного и более циклов регенерации.
Во второй схеме геометрический процессор работает быстрее, чем необходимо для регенерации достаточно сложных изображений. В этом случае исходная геометрическая база данных, посланная из ЦПУ, сохраняется непосредственно в дисплейном буфере, а векторы обычно задаются в пользовательских координатах в виде чисел с плавающей точкой. Дисплейный контроллер за один цикл регенерации считывает информацию из дисплейного буфера, пропускает ее через геометрический процессор и результат передает генератору векторов. При таком способе обработки геометрические преобразования должны выполняться "на лету" в течение одного цикла регенерации.
Растровое устройство можно рассматривать как матрицу дискретных ячеек (точек), каждая из которых может быть подсвечена. Таким образом, оно является точечно-рисующим устройством. Невозможно, за исключением специальных случаев, непосредственно нарисовать отрезок прямой из одной адресуемой точки или пиксела в матрице в другую адресуемую точку. Отрезок можно только аппроксимировать последовательностями точек (пикселов), близко лежащих к реальной траектории отрезка. Эту идею иллюстрирует рисунок 2.
Чаще всего для графических устройств с растровой ЭЛТ используется буфер кадра. Буфер кадра представляет собой большой непрерывный участок памяти компьютера. Для каждой точки или пиксела в растре отводится как минимум один бит памяти. Эта память называется битовой плоскостью. Для квадратного растра размером 512 х 512 требуется 2 18, или 262144 бита памяти в одной битовой плоскости. Из-за того, что бит памяти имеет только два состояния (двоичное 0 или 1), имея одну битовую плоскость, можно получить лишь черно-белое изображение. Битовая плоскость является цифровым устройством, тогда как растровая ЭЛТ - аналоговое устройство. Поэтому при считывании информации из буфера кадра и ее выводе на графическое устройство с растровой ЭЛТ должно происходить преобразование из цифрового представления в аналоговый сигнал. Такое преобразование выполняет цифро-аналоговый преобразователь (ЦАП). На рисунке 3 приведена схема графического устройства с черно-белой растровой ЭЛТ, построенного на основе буфера кадра с одной битовой плоскостью.
Число доступных уровней интенсивности можно увеличить, незначительно расширив требуемую для этого память и воспользовавшись таблицей цветов, как схематично показано на рисунке 5.
Поскольку существует три основных цвета, можно реализовать простой цветной буфер кадра с тремя битовыми плоскостями, по одной для каждого из основных цветов. Каждая битовая плоскость управляет индивидуальной электронной пушкой для каждого из трех основных цветов. Три основных цвета, комбинируясь на ЭЛТ, дают восемь цветов. Схема простого цветного растрового буфера показана на рисунке 6. Чтобы увеличить количество цветов для каждой из трех цветовых пушек используется дополнительные битовые плоскости.
Тип экрана:
Экран жидкокристаллического дисплея (ЖКД) состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые изменяют свои оптические свойства в зависимости от прилагаемого электрического заряда. Жидкие кристаллы сами не светятся, поэтому ЖКД нуждаются в подсветке или во внешнем освещении. Основным достоинством ЖКД являются их габариты (экран плоский). К недостаткам можно отнести недостаточное быстродействие при изменении изображения на экране, что особенно заметно при перемещении курсора мыши, а также зависимость резкости и яркости изображения от угла зрения.
ЖК-дисплеи обладают неоспоримыми преимуществами перед конкурирующими устройствами отображения:
- 1.Размеры. ЖК-дисплеи отличаются малой глубиной и небольшой массой и поэтому их более удобно перемещать и устанавливать, чем ЭЛТ-мониторы, у которых размер в глубину приблизительно равен ширине. 2.Энергопотребление. ЖК-дисплей потребляет меньшую мощность, чем ЭЛТ-монитор с сопоставимыми характеристиками. 3.Удобство для пользователя. В ЭЛТ электронные лучи при развертке движутся по экрану, обновляя изображение. Хотя в большинстве случаев можно установить такую частоту регенерации (число обновлений экрана электронными лучами в секунду), что изображение выглядит стабильным, некоторые пользователи все же воспринимают мерцание, способное вызвать быстрое утомление глаз и головную боль. На экране ЖК-дисплея каждый пиксел либо включен, либо выключен, так что мерцание отсутствует. Кроме того, для ЭЛТ-мониторов характерно в небольших количествах электромагнитное излучение; в ЖК-мониторах такого излучения нет.
HCA-панели обеспечивают такую же контрастность изображения, как TFT-матрицы, и почти не уступают им по скорости реакции при воспроизведении видео. Фирма Arithmos разработала процессор визуализации для DSTN-панелей, который позволяет еще более улучшить качество изображения. Таким образом, для пользователей, ограниченных в средствах, DSTN-дисплей может оказаться хорошим компромиссным решением. Нынешним летом Arithmos надеется выпустить в продажу 15-дюйм DSTN ЖК-дисплей (построенный с применением ее технологии) по цене около 1000 долл.
В ЖК-дисплеях угол обзора не только мал, но и асимметричен: обычно он составляет 45o по горизонтали и +15...-30 по вертикали. Излучающие дисплеи, такие как электролюминесцентные, плазменные и на базе ЭЛТ, как правило, имеют конус обзора от 80 до 90 по обеим осям. Хотя в последнее время на рынке появились модели ЖК-дисплеев с увеличенным углом обзора 50-60o.
Представитель Hitachi Тим Паттон (Tim Patton) считает, что в традиционных ЖК-дисплеях наблюдается зависимость контрастности и цвета изображения от угла зрения. Эта проблема обострялась по мере увеличения размеров ЖК-дисплеев и приобретения ими способности воспроизводить больше цветов.
Hitachi при создании своего нового дисплея SuperTFT воспользовалась иной технологией - IPS. Как известно, в обычных ЖК-дисплеях молекулы жидкого кристалла меняют свою ориентацию с горизонтальной на вертикальную под воздействием электрического поля, а адресующие электроды помещаются на две расположенные друг против друга стеклянные подложки. В IPS(in-plane switching)-дисплеях, наоборот, происходит чередование двух углов в горизонтальной плоскости, причем оба электрода находятся на одной из подложек. В результате угол обзора как по горизонтальной, так и по вертикальной оси достигает 70 o.
Газоплазменные мониторы состоят из двух пластин, между которыми находится газовая смесь, светящаяся под воздействием электрических импульсов. Такие мониторы не имеют недостатков, присущих ЖКД, однако их нельзя использовать в переносных компьютерах с аккумуляторным и батарейным питанием, так как они потребляют большой ток.
Размер по диагонали (обычно от 14" до 21") и размер зерна(обычно от 0.25 до 0.31 мм).
Размер по диагонали (расстояние от левого нижнего до правого верхнего угла экрана) приводится в дюймах. Наиболее распространены мониторы с диагональю 14". Однако работать с монитором с диагональю 15" намного удобнее, а для работы с графическими пакетами, издательскими системами и системами автоматизированного проектирования необходимы мониторы с диагональю не меньше 17";- теневая маска (Dot Pitch) экрана. Единицей измерения является расстояние между отверстиями маски в мм. Чем меньше это расстояние и чем больше отверстий, тем выше качество изображения. Этот параметр часто отождествляют с зерном экрана монитора, однако это справедливо не во всех случаях; - разрешение, измеряется в пикселах (точках), помещающихся по горизонтали и вертикали видимой части экрана. В настоящее время наиболее распространены мониторы с расширением не менее 1024*768 пикселей; - кинескоп. Наиболее предпочтительны следующие типы кинескопов: Black Trinitron, Black Matrix и Black Planar. Данные кинескопы очень контрастны, дают отличное изображение, однако их люминофор чувствителен к свету, что может сократить срок службы монитора. К тому же при работе с контрастным монитором быстрее устают глаза; - потребляемая мощность. У мониторов с диагональю 14" потребляемая мощность не должна превышать 60 Вт, иначе повышается вероятность теплового перегрева монитора, что сокращает срок его службы. У более крупных мониторов потребляемая мощность соответственно выше; - антибликовое покрытие. Для дешевых мониторов используют пескоструйную обработку поверхности экрана. При этом качество изображения ухудшается. В дорогих мониторах на поверхность экрана наносится специальное химическое вещество, обладающее антибликовыми свойствами; - защитные свойства монитора. В настоящее время распространены мониторы с низким уровнем излучения (LR-мониторы). Они отвечают нормам стандарта MPRI или MPR II.
Цветность:
- 1. Цветные; 2. Монохромные.
Частота кадров (обычно от 50 до 100 Гц).
Все современные аналоговые мониторы условно можно разделить на следующие типы:
- 1. с фиксированной частотой развертки; 2. с несколькими фиксированными частотами; 3. и многочастотные (мультичастотные).
Видеодиапазон (обычно от 65 до 200 МГц).
Видеосигнал:
- 1.Цифровой; 2.Аналоговый.